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With the proliferation of safety-critical applications in the automotive 

domain, it is imperative to guarantee the functional safety of circuits and 

components constituting automotive systems, e.g., the electrical and/

or electronic subsystems in automotive vehicles. Analog and Mixed-Signal 

(AMS) circuits, prevalent in such systems, are more susceptible to faults 

than their digital counterparts, due to parametric perturbations, noise, 

environmental stress, among others. However, their continuous signal 

characteristics provide an opportunity for early anomaly detection, which 

in turn, facilitates the deployment of safety mechanisms to prevent 

eventual system failure. Towards this end, we propose a novel 

unsupervised machine learning-based framework to perform early anomaly 

detection in AMS circuits. Our approach involves anomaly injection in 

various circuit locations and individual components to develop a 

comprehensive anomaly model, feature extraction from observation 

signals, and clustering algorithms to facilitate anomaly detection. To this 

end, we propose a novel centroid selection technique for the unsupervised 

learning algorithms, which is tailored for detecting anomalies in AMS 

circuits. This approach furnishes high fidelity anomaly detection by 

identifying the ideal cluster centers corresponding to anomalous and non-

anomalous signals. Furthermore, time series-based analysis is proposed to 

improve and expedite the anomaly detection performance. We evaluated 

our solution using a case study of two AMS circuits commonly present in 

automotive systems-on-chips. Our experimental results exhibit that the 

proposed approach furnishes up to 100% accuracy. Additionally, the time 

series-based technique reduces the anomaly detection latency by 5X, 

thereby demonstrating the efficacy of our solution.  
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